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Quantum cognition machine learning:
financial forecasting

Traditional machine learning methods suffer from the curse of dimensionality. Here, Ryan Samson, Jeffrey Berger, Luca Candelori,Vahagn
Kirakosyan, Kharen Musaelian and Dario Villani introduce a novel machine learning approach based on the ideas of quantum cognition,

which they call quantum cognition machine learning (QCML). The complexity of QCML scales linearly with the number of inputs, rather

than exponentially. The authors demonstrate an application of QCML to forecasting stock returns

T he last decade has seen massive improvements in machine learning
techniques that hold promise for breakthrough advances in produc-
tivity and technology. At the same time, there is a growing under-

standing that something fundamental is missing in the current framework
of generative artificial intelligence and statistical machine learning in general
(Dawid & LeCun 2022).

In this paper, we show how amachine learning approach based on the ideas
of quantum cognition (see Busemeyer & Bruza (2012) and Musaelian et al
(2024) and the references therein) is capable of capturing features of a sys-
tem differently from existing machine learning approaches. In addition, this
approach can accommodate a large number of features and concept creation
not bound by sharp categories.

Shortcomings of classical machine learning

Whether implicitly or explicitly, machine learning has always been about
learning a joint probability distribution of preprocessed features, whose rel-
evance and significance is ascertained by a human understanding of the
domain. The fundamental problem with this classical probabilistic approach
is that its complexity grows exponentially with the number of features. For
example, a probability distribution over N binary features corresponds to a
vector of size 2N � 1. This also leads to an exponential requirement for the
amount of data needed to learn this distribution statistically (Musaelian et al
2024).

In finance, given the nonstationarity of financial time series, it is easy to
see that even for a small set of features there is insufficient data to model com-
plex joint distributions. For example, imagine you have available for training
10 years of daily data on 3,000 firms, which would amount to approximately
7.8 million observations. If you wish to model the joint distribution of 10
features bucketed into quintiles, you have 510 (approximately 9.8 million)
bins, and statistics is clearly not possible.

You could alleviate the dimensionality problem by using coarser bins:
210 bins would allow for statistics, but this model is likely to be far less
detailed than desired. Alternatively, in some cases you could expand the
amount of training data by extending the sample much further back in time,
but this would incorporate data from when markets were substantially dif-
ferent, which again leads to undesirable (less relevant) results. A surpris-
ing answer to these problems lies in using quantum, rather than classical,
probabilities.

Quantum cognition machine learning

The idea of quantum cognition emerged from the works of Aerts & Aerts
(1995), Khrennikov (2006) and Busemeyer & Bruza (2012) (see Pothos &
Busemeyer (2022) for a recent survey). In these works, it is posited that a
state of mind is formally given by a quantum state – that is, a vector in a
Hilbert space – and all questions that can be answered by someone in that
state of mind are represented as operators in that Hilbert space.

We demonstrate here how representing data as a vector in a Hilbert space
with observables represented by operators (matrices) can lead to a logarithmic
reduction in the complexity of representation. This dramatic economy of
representation may explain why evolution would select quantum cognition
over classical statistical learning. As living creatures, we do not encounter
the world as well-structured data relevant to the task at hand. Instead, we are
confronted by a barrage of unstructured inputs that need to be made sense of,
while focusing on what is important and drawing conclusions by abstracting
away what is irrelevant.

Building on these insights, we demonstrate a new practical form of
machine learning, which we call quantum cognition machine learning
(QCML).Our formulation naturally lends itself to implementation on quan-
tum computing hardware, but it is also easily implementable on classical
hardware at lower Hilbert space dimensions. In our formulation, we define
an error Hamiltonian as a sum of a loss function for each observable:

H.xt ;L; f OAkg/ D

X
k

L. OAk ;xt;k/ (1)

where xt is a data vector withK elements and is one of T total data vectors,
L is an arbitrary nonnegative loss function with a Hermitian output, and
f OAkg is a set of Hermitian observable operators that must be learned. We
have flexibility in how we choose L as long as the result is nonnegative and
Hermitian; we can choose simple forms inspired by Gaussian loss:

H.xt ;L; f OAkg/ D

X
k

. OAk � xt;k � I /2 (2)

or more complex functions for classification, the learning of context or other
objectives. This error Hamiltonian depends on the data itself, the parameters
that compose the set of observable operators f OAkg, and the choice of loss
function L. Model tractability can be improved through careful choice of
the parameterisation of our operators, and we have developed several variants
of this.
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We learn the operators f OAkg through the formalism of quasi-coherent
states (Candelori et al 2024; Ishiki 2015; Steinacker 2021). Recall that in
quantum mechanics a state is a vector of unit norm in a Hilbert space and is
represented in bra-ket notation by a ket j i. The inner product of two states
j 1i, j 2i is represented by a bra-ket h 1j 2i. The expectation value of a
Hermitian operator O on a state j i is denoted by h jO j i, representing
the expected outcome of the measurement corresponding to O on the state
j i.

Training these models involves iterative updates to the ground state j t i

of the error Hamiltonian and the observables OAk to reduce the ground
state energy of H until the desired convergence is reached.1 The specifics
of each of these steps depend on the choice of the loss function and how we
parameterise OAk .

Model training

1. Randomly initialise the parameters of f OAkg

2. Iterate over the data and operators until the desired convergence
is reached

a. GenerateH.xt ;L; f OAkg/

b. Holding OAk constant, find the ground state j t i of
H.xt ;L; f OAkg/

c. Holding j t i constant, calculate the gradients ofH.xt ;L; f OAkg/

with respect to OAk

d. Update OAk via gradient descent

Having suitably trained a set of operators OAk , consider an arbitrary set of
J inputs xj , J � K, and the corresponding operators OAj . After solving for
the ground state j J i of the error Hamiltonian computed over this subset,
H.xj ;L; f OAj g/, the expected value of any operator B 2 OAk is computed
as h J jB j J i. This allows us to forecast any of our K operators based on
the quasi-coherent state computed over any subset of the operators.2

Quantum cognition machine learning applied to

financial forecasting

� Overview. We illustrate how QCML can be used to capture complex
joint distributions for financial forecasting, while complementing existing
machine learning techniques.3 In order to build confidence in the QCML
framework, we begin with a very simple example involving two classic fea-
tures: momentum and value. There are many definitions of value; here we
use revenues scaled by the market capitalisation (‘market cap’) (see the ‘Data
and features’ section below for details). Our goal is to train both a QCML
model and a simple neural network (NN) to predict returns in excess of the
returns when momentum and value are considered linearly, and to compare

1The ground state j t i is the eigenstate associated to the lowest eigenvalue of the
error Hamiltonian and is also called the quasi-coherent state.
2Note this also provides a natural way to deal with missing data: as J can be any
subset of K, any missing inputs can simply be excluded from the error Hamilto-
nian calculated for forecasting, rather than being prefilled in some manner. These
missing inputs could also themselves be forecast given j J i.
3We do not make any claims of superiority in these examples but wish to show
that the framework is efficacious and unique.

the output of the two approaches. We then move to a second example incor-
porating additional well-known features often used in equity forecasting and
risk management.
� Data and features. We collect daily data on a dynamic set of roughly
1,500 US firms chosen for having the greatest size, liquidity and maturity.
We create the following commonly used features4 using market data sourced
from Bloomberg, accounting data sourced from Standard & Poor’s (S&P)
Capital IQ and securities lending data sourced from S&P Securities Finance.

� Accruals: sign-flipped four-quarter change of:

total assets � working capital � total liabilities

� long-term investments C long-term debt

scaled by total assets, de-meaned by Global Industry Classification Standard
(GICS) industry code and cross-sectionally normalised.

� Beta: beta estimated with a rolling 252-day time series, relative to the
S&P 500 index.

� EBITDA to TEV: prior four quarters’ earnings before interest, taxes,
depreciation and amortisation (EBITDA), scaled by total enterprise value
(TEV), de-meaned by GICS industry code and cross-sectionally normalised.

� Momentum: returns from 21 days ago to 252 days ago, cross-sectionally
normalised.

� Operating efficiency: prior four quarters’ revenues, scaled by total assets,
de-meaned by GICS industry code and cross-sectionally normalised.

� Profit margin: prior four quarters’ net income, scaled by prior four quar-
ters’ revenues, de-meaned by GICS industry code and cross-sectionally nor-
malised.

� Short utilisation: sign-flipped lender value on loan (averaged with a 10-
day half-life), scaled by active lendable value (also averaged with a 10-day
half-life), cross-sectionally normalised.

� Size: log of market cap, cross-sectionally normalised.

� Value: prior four quarters’ revenues, scaled by market cap, de-meaned by
GICS industry code and cross-sectionally normalised.

� GICS dummies: dummy variables based on GICS industry group mem-
bership.

� Model setup and training. Themodels are trained using daily data from
January 2008 through August 2013.While both the NN andQCMLmodels
can be updated online or through rolling/expanding retraining, for simplicity
we keep the parameters for both models static after the initial training.

As our target variable for model training we use the 15-day forward log
returns, projected away frommodel input features as well as beta, size and the
GICS dummies.5 After projection, target returns are cross-sectionally nor-
malised. Although forecasts learned from models using such a residualised

4Hou et al (2020) used their proposed q-factor model to test the robustness of
various features proposed in the financial literature, and their paper also serves as
an excellent survey of such features.
5 If you wish to solve for portfolio weights that maximise expected returns,
with a penalty for expected portfolio variance, while maintaining zero expo-
sure to a set of controls, then for weights w, forecast f , asset variance V ,
risk aversion � and controls M , you need to solve for the w that minimises
�wTf C 0:5�wTVw such that wTM D 0. The solution is w D V �1Rf ,
whereR D I �M.MTV �1M/�1MTV �1. ThusR is a projection operator
that projects away fromM , consistent with our desired investment process. Also,
Rf is the residual from an inverse-variance-weighted regression of f onM .
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A. Sharpe ratios of returns from the NN and QCML forecasts for the

momentum/value models

Period NN QCML Combination

Sep 2013–Jun 2024 0.58 0.69 0.75

Sep 2013–Apr 2017 1.91 0.80 1.61

May 2017–Dec 2020 �0.30 0.73 0.27

Jan 2021–Jun 2024 0.11 0.53 0.33

Strategy portfolios have zero exposure to momentum, value, beta, size and GICS industry groups,
and thus include no linear contribution these features make to returns

target variable are likely to have a small average correlation with all the fea-
tures that the target returns have been projected away from (which includes
the input features), we project the final aggregate forecasts away from the
relevant input and control features in order to focus on performance after
controlling for linear effects.

To create more robust forecasts, we partition stocks into randomised
groups of approximately 50, train individual NN and QCML models over
each subset, and average forecasts for each stock across 100 different such
partitions.

The NN architecture and training approach we use adheres fairly closely
to that recommended by Gu et al (2020), other than our more complex
approach to ensembling. Our NN is implemented in PyTorch and contains
three hidden layers of 32, 16 and 8 nodes, respectively, with batch normali-
sation applied prior to rectified linear unit activation. We use a simple mean
square error loss function and train using the Adam optimiser.

OurQCMLmodel uses aHilbert space dimensionality of 32, and operator
representation and training techniques proprietary to Qognitive, Inc., but
following the general gradient descent approach outlined in the section titled
‘Quantum cognition machine learning’, implemented on classical hardware.
� Model evaluation. To test performance, we use covariance estimated
daily from daily returns6 to produce Markowitz-optimal investment port-
folios, where portfolio weight w D V �1f given covariance V and fore-
cast f .7 Given that the forecasts have been projected away from input and
control features, these investment portfolios will also have no exposure to
those features.8

Investment portfolios are smoothed over 15 days to proxy for the fact
that realistic investment portfolios can only gradually begin trading on new
forecasts. We compute daily returns to the smoothed portfolios and analyse
portfolio performance from September 2013 through March 2024.

We do not remove transaction costs since these forecasts are presented
not as a stand-alone investment strategy but rather as capturing complex
attributes of the joint distribution that could be additive to an existing
strategy.
� Momentum/value model. For our first example, the model input fea-
tures are momentum and value, as defined in the section titled ‘Data and
features’. Thus, the target returns and final forecasts are projected away from
momentum, value, beta, size and the GICS dummies.

6 Covariance is estimated using a technique proprietary to Duality Group.
7Note that forecasts here have already been projected away from inputs and
controls as explained in the section titled ‘Model setup and training’ and in
footnote 5.
8Given a matrix of input and control features M , we have f TM D 0 and
wTM D 0.

1 Cumulative returns from the NN and QCML forecasts for the

momentum/value models

NN

QCML

2014 2016 2018 2020 2022 2024

Strategy portfolios have zero exposure to momentum, value, beta, size and GICS

industry groups, and thus include no linear contribution those features make to

returns. From a visual examination of the performance, it is clear the models are

picking up on similar, but distinct, underlying patterns. The correlation of realised

returns is 0.41. Returns have been scaled by full-sample realised volatility

In table A we show the Sharpe ratios of each of the forecasts, as well as
the Sharpe ratios of an equal-risk-weighted combination of the two.9 We
find that both the NN and QCML models produce moderately positive sig-
nals, which are in excess of the returns when the inputs are considered lin-
early. However, the correlation of the return streams generated by the two
approaches is only 0.41 over the full test period, and we see that an equal-risk-
weighted combination of the two approaches outperforms either individual
approach.

We plot the cumulative returns from the NN and QCML forecasts in
figure 1. From a visual examination of the performance, it is clear the models
are picking up on similar, but distinct, underlying patterns.

As these simple models have only two inputs and a single forecast, we can
also plot surfaces of the forecasts as a function of the inputs, to visually com-
pare what the NN and QCML models learn. We plot the QCML forecast
relative to value and momentum in figure 2 and the equivalent for the NN
forecast in figure 3.

We notice some similarities between the surfaces – both models predict
strong returns for stocks with moderately high value and moderately low
momentum, and poor returns for those with highmomentum and high value
or with low momentum and low value. In both cases we could interpret the
models as having learned that value is much stronger among low-momentum
(loser) stocks, and that the momentum effect is weaker among high-value
stocks and stronger among low-value (expensive) stocks.

9The risk scalar for each strategy is the standard deviation over an expanding-
window sample of forecast returns, lagged by two days.
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2 The QCML momentum/value model forecast as a function of momentum

and value

3 The NN momentum/value model forecast as a function of momentum

and value

This is consistent with previously documented findings for patterns in the
interaction of value and momentum stocks. For example, Asness (1997) doc-
umented a similar pattern despite using a different value metric (book value
scaled by market cap) and having a data sample independent in time from
our training sample.

B. Sharpe ratios of returns from the NN and QCML forecasts for the extended models

Period NN QCML Combination

Sep 2013–Jun 2024 1.25 1.25 1.39

Sep 2013–Apr 2017 1.91 1.72 1.81

May 2017–Dec 2020 1.05 1.26 1.48

Jan 2021–Jun 2024 0.64 0.63 0.78

Strategy portfolios have zero exposure to all input and control features (all features defined in the
section titled ‘Data and features’), and thus include no linear contribution these features make to
returns

4 Cumulative returns from the NN and QCML forecasts for the extended

models

NN

QCML

2014 2016 2018 2020 2022 2024

Strategy portfolios have zero exposure to all input and control features (all features

defined in the section titled ‘Data and features’), and thus include no linear

contribution those features make to returns. The correlation of realised returns is

0.32. Returns have been scaled by full-sample realised volatility

Of course, the details of the NN and QCML forecast surfaces differ, and
both approaches are likely to learn an effect that is noisy relative to the truth.
However, the fact that QCML learns something both unique and reasonable
when compared with an NN helps to build our confidence in QCML as a
forecasting technique.
� Extended model. We now extend to the more interesting case of several
input features. For these models, in addition to momentum and value, our
input features include accruals, EBITDA to TEV, operating efficiency, profit
margin, short utilisation and size. As before, the target returns and final fore-
casts are projected away from inputs and controls, which in this case are all
the features defined in the section titled ‘Data and features’.

In table B we show the Sharpe ratios of each of the forecasts, as well as the
Sharpe ratios of an equal-risk-weighted combination of the two (formed as
in the prior section).

In this case, both the NN and QCML models produce strongly positive
signals, which are in excess of the returns when the inputs are considered
linearly. In addition, the correlation of the return streams generated by the
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C. Sharpe ratios of returns from the linear forecasts

EBITDA Operating Profit Short

Period Accruals to TEV Momentum efficiency margin utilisation Value

Sep 2013–Jun 2024 0.29 0.04 0.65 1.36 0.27 0.93 0.25

Sep 2013–Apr 2017 0.51 0.86 0.96 1.56 0.85 1.90 1.05

May 2017–Dec 2020 �0.30 �1.48 0.47 1.12 �0.24 �0.29 �0.92

Jan 2021–Jun 2024 0.84 1.19 0.53 1.42 0.24 1.30 1.15

Strategy portfolios are projected away from beta, size and the GICS dummies

D. Sharpe ratios of returns from equal-risk combined linear forecasts for momentum

and value only, from the same linear forecasts but with either the NN or QCML

momentum/value forecasts added, and from all momentum/value strategies

Linear Linear

Linear strategies strategies All

Period strategies + NN + QCML strategies

Sep 2013–Jun 2024 0.91 0.99 1.11 1.07

Sep 2013–Apr 2017 1.84 2.46 1.87 2.25

May 2017–Dec 2020 �0.72 �0.71 0.02 �0.13

Jan 2021–Jun 2024 1.54 0.99 1.42 0.97

The QCML forecast provides better diversification than the NN forecast

two approaches is even lower than in the previous example, being 0.32 over
the full test period, and we see that an equal-risk-weighted combination of
the two approaches outperforms either individual approach.

We plot the cumulative returns from the NN and QCML forecasts in
figure 4.
� Combining nonlinear and linear models. We next demonstrate the
ability of QCML forecasts to improve on linear forecasts, beyond the
improvement seen from NN forecasts. We do this by taking equal-risk-
weighted combinations of linear forecasts with the nonlinear NN and
QCML forecasts.

For each previously discussed model (the momentum/value and extended
models), we produce linear forecasts from all input features except size, which
is maintained as a control.We produce our linear forecast by taking the linear
features and projecting them away from beta, size and the GICS dummies.
This is not a statement regarding which linear features should be included
in a forecast, how to best form hedged portfolios of linear features or how
to appropriately weight a diverse set of forecasts. It is meant solely to pro-
vide a simple demonstration of the ability of QCML forecasts to improve
linear models. We show the Sharpe ratios of each of the linear forecasts in
table C.

In table D we show the Sharpe ratios of returns from equal-risk combined
linear forecasts for momentum and value features only, from the same lin-
ear forecasts but with either the NN or QCML momentum/value forecasts
added, and from all four strategies (momentum, value, momentum/value
NN and momentum/value QCML). Both the NN and QCML forecasts
improve the Sharpe ratio of the linear forecasts alone, with a slightly greater
improvement seen from adding the QCML forecast.

In table E we show the Sharpe ratios of returns from equal-risk combined
linear forecasts for all features, from the same linear forecasts but with either
the NN or QCML extended-model forecasts added, and from all nine strate-
gies (the seven linear forecasts, extended NN and extended QCML). Again,
both the NN and QCML forecasts improve the Sharpe ratio of the linear
forecasts alone, with a slightly greater improvement seen from adding the
QCML forecast. Here, the best Sharpe ratio is achieved by using both the
NN and QCML forecasts.

E. Sharpe ratios of returns from equal-risk combined linear forecasts for all features,

from the same linear forecasts but with either the NN or QCML extended-model

forecasts added, and from all extended strategies

Linear Linear

Linear strategies strategies All

Period strategies + NN + QCML strategies

Sep 2013–Jun 2024 1.17 1.38 1.43 1.58

Sep 2013–Apr 2017 2.31 2.57 2.66 2.82

May 2017–Dec 2020 �0.66 �0.32 �0.26 0.03

Jan 2021–Jun 2024 1.77 1.81 1.82 1.83

The QCML forecast provides better diversification than the NN forecast, but the best Sharpe ratio is
achieved by using both the NN and QCML forecasts

5 Cumulative returns from equal-risk combined linear forecasts for

momentum and value only, from the same linear forecasts but with either

the NN or QCML momentum/value forecasts added, and from all

momentum/value strategies

2014 2016 2018

Linear strategies

Linear strategies + NN

Linear strategies + QCML

All strategies

2020 2022 2024

Returns have been scaled by full-sample realised volatility

We plot the cumulative returns from the linear and enhanced forecasts
for the momentum/value models in figure 5, and we plot the cumulative
returns from the linear and enhanced forecasts for the extended models in
figure 6.
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6 Cumulative returns from equal-risk combined linear forecasts for all

features, from the same linear forecasts but with either the NN or QCML

extended-model forecasts added, and from all extended strategies

Linear strategies

Linear strategies + NN

Linear strategies + QCML

All strategies

2014 2016 2018 2020 2022 2024

Returns have been scaled by full-sample realised volatility

Conclusion

We developed and demonstrated the use of a newmachine learning paradigm
using principles of quantum cognition, which we call QCML. In a world
with an immense proliferation of data sets, the need to address large feature
sets paired with small observation sets will become more and more pressing.
QCML achieves a logarithmic economy of data representation, making it
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well suited to meet this challenge – as well as the challenge of nonstationarity,
which reduces the amount of relevant data available.

With classic statistical learning, every time you add a variable to a model
the uncertainty grows. This leads to difficulty or instability in forming statis-
tical estimates and creates a requirement for judicious choices of model vari-
ables. In quantum systems, by contrast, the uncertainty of the whole sys-
tem can be less than the uncertainty of the components (see Musaelian et al
(2024) and the references therein).

Here, we demonstrated an application of QCML to forecasting stock
returns in excess of the linear contribution to returns of the input features.
We benchmarked forecasts produced by QCML against forecasts produced
by a neural network and showed that, even for relatively simple systems and
a classical hardware implementation, QCML can offer an advantage over or
complement the forecasts produced by the neural network.

In future work, we plan to continue studying the properties and applica-
tions of QCML. Candelori et al (2024) shows one such research direction,
where the authors extend QCML to apply it to manifold learning, specifi-
cally to the estimation of the intrinsic dimension of data sets, demonstrating
the practicality of the proposed method on synthetic manifold benchmarks
as well as real data sets. We are also exploring ways to integrate QCML with
existing statistical techniques and working towards a practical implementa-
tion on quantum hardware. �
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